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Abstract

This paper presents results for the efficiency of a stratified chilled-water storage tank with one inlet and one outlet. Numerical
solutions for the two-dimensional, unsteady, laminar flow during stably stratified tank filling are compared with a one-dimensional
model involving only conductive heat transfer across the thermocline separating the entering cold water and the exiting warm water.
This one-dimensional model represents the minimum level of thermal mixing. The difference between the one-dimensional and two-
dimensional models are revealed by a horizontal average of the governing equation for the two-dimensional model. Comparison
reveals that for inlet Reynolds numbers of approximately 100, the efficiency of the actual. two-dimensional filling is less than
10% below the optimal efficiency of the model. Examination of an effective diffusivity, which can be associated with the mixing ig-
nored in the one-dimensional model, reveals that the early and late stages of the tank-filling process are responsible for most of the
deviation between the actual and ideal performances. For the present Reynolds number range, the two-dimensional predictions for
effective diffusivity agree well with values derived from published experimental data. © 1998 Elsevier Science Inc. All rights re-
served.
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Notation Ax. Ay dimensionless numerical grid size (AV//, Av/{)
Ay dimensionless elevation of the fill line (//X)
(Dimensional and dimensionless variables are denoted with X.Y dimensionless domain width, height (}/1.H /1)

and without a hat, respectively.)

¢ specific heat (kJ/kg -°C) Greek
CcOoP coeflicient of performance o molecular thermal diffusivity (m?/s)
Fr Froude number (#/\/g'1) / thermal expansion coefficient (K ')
a. ¢ gravitational constant, reduced gravity (m/s’) ) dimensionless thermocline half-thickness (0//)
H operator defined in Eq. (15) & effective thermal diffusivity (m?/s)
/ inlet height (m) 1 storage tank efficiency
Q dimensionless heat transfer K mixing factor
Pe Peclet number (#//2 = Pr Re) v kinematic viscosity (m-/s)
Pr Prandtl number P density {kg/m") A
Re Reynolds number (w//v) ¢ dimensiontess cold water volume (¢/1°)
t dimensionless time (7%i//) o W dimensionless stream function (i /@/)
T dimensionless temperature difference [(T — 7;)/AT) w  dimensionless vorticity («//u)
T horizontally averaged dimensionless temperature
difference ) .
u, v dimensionless velocity components (i/u. /1) Subscripts
i average dimensional inlet velocity (m/s) ¢ charging
V volume (m?) d discharging
W. H  domain width, domain height (m) ! inlet, i ,
X,y dimensionless Cartesian coordinates (¥//.7/1) m  maximum allowable outlet temperature for discharging

0 bulk-averaged outlet temperature
> tall tank
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1. Introduction

Chilled-water storage has achieved widespread use over the
past decade because of its ability to decouple large, peak cool-
ing loads from the operation of their respective chiller plants.
With space cooling now accounting for nearly half of the com-
mercial sector’s summer peak demand for electricity (Wend-
land and Blatt, 1992), the potential benefits of this
technology are significant. Shifting electrical demand from
on-peak to off-peak hours results in a more uniform demand
profile for utilities; thereby raising the efficiency of power gen-
eration and transmission. For the consumer, operating costs
are reduced because of the lower off-peak utility rates, and cap-
ital costs are often reduced because of the smaller chiller need-
ed to meet a time-averaged cooling load. Seeley (1996)
estimated that cool storage has resulted in a shift of over 300
megawatts of peak cooling load in the United States since
1992.

Most chilled-water storage systems use a single, naturally
stratified tank. Although similar in principle to the storage de-
vices commonly used in solar-thermal systems. chilled-water
storage tanks (1) operate with one-tenth the density difference,
and (2) have a storage volume over one thousand times larger.
However, for both chilled-water and solar-thermal storage, il
is the level of mixing between the “hot” and ‘cold’ liquid that
determines the efficiency of the device.

The first studies of stratified chilled-water storage tanks
were almost exclusively experimental in nature. Wildin mea-
sured efficiency and temperature profile data for both small-
scale and laboratory-scale tanks (Wildin and Truman, 1985;
Wildin, 1989: Wildin and Sohn, 1993). Baines ct al. (1982) ex-
amined laboratory-scale tanks with stratification produced by
thermal gradients and salinity gradients. The relatively few nu-
merical simulations of the tank-filling process reported in the
literature (Cai et al., 1993; Chan et al., 1983; Valentine and
Tannous, 1985) have not resolved the large thermal gradients
observed experimentally.

One-dimensional models for the vertical transport of the
thermocline through the tank have been used in studies of so-
lar-thermal storage tanks. Cole and Bellinger (1982) used a
least-squares fit to experimentally measured temperature pro-
files in order to determine empirical constants in a one-dimen-
sional formulation. Oppel et al. (1985) introduced a finite-
difference based algorithm to solve the one-dimensional con-
vective energy equation for the time-varying tflowrates arising
in a constant-outlet-temperature solar collector. They also in-
troduced an effective diffusivity to account for the thickening
of the thermocline produced by turbulent mixing near the inlet.
Later, Zurigat et al. (1991) proposed a correlation for the effec-
tive thermal diffusivity in terms of a Reynolds number and a
Richardson number. Their correlation factor was computed
by a trial-and-error method that attempted to obtain good
agreement with temperature profiles measured in the late stag-
es of the filling process. Truman et al. (1985) adapted the basic
numerical algorithm of Oppel et al. (1985) to produce a model
of stratified chilled-water storage that included the heat capac-
ity of the tank wall. Mixing was accounted for by averaging
the temperature over a fixed number of grid points located
near the inlet (Truman and Wildin, 1989).

Homan et al. (1996) introduced a method for estimating an

effective thermal diffusivity by relating an analytic solution of

the one-dimensional energy equation to empirically measured
thermocline thicknesses and outlet temperature profiles. In a
recent paper (Homan and Soo, 1997) we also conducted accu-
rate, direct numerical simulations of the stably stratified filling
process in order to identify basic fluid dynamic phenomena oc-
curring during successive stages of the process. In the present
paper, we build on this previous work by using our numerical

model of the filling process to compute directly its relationship
to the analytic model and to the thermal efficiency of a strati-
fied storage tank under laminar flow conditions.

2. Mathematical formulation
2.1. Multidimensional flow model

The two geometries we have considered are shown in
Fig. 1. We have chosen these geometries to examine the dy-
namics of a stratified inflow for (1) tanks with very large aspect
ratios, and (2) tanks with order-one aspect ratios. The two ge-
ometries enable us to control the impact of the outlet location
as well as to examine the complete charging and discharging
process. During the charging process, the tank is filled with
cold liquid that enters at the lower corner of the tank, while
warm liquid is withdrawn, at an equal rate, at the upper corner
of the tank. For the discharge process, the role of the inlet and
outlet are reversed: warm fluid flows into the tank at the upper
boundary or corner of the tank and cold liquid is withdrawn at
the lower corner of the tank.

The characteristic length, velocity and time scales have been
chosen as the charging inlet height /, the area-averaged inlet
velocity 7, and convective time scale //#, respectively. With
this choice of time scale, a single unit of dimensionless time
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Fig. 1. Geometry and coordinate system for (a) the lower portion of a
tall tank with a single corner inlet. and (b) a tank with a single inlet and
outlet.
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corresponds to the period required for an /* ‘volume’ of fluid
to flow into or out of the tank. The characteristic temperature
difference, AT, has been chosen as the difference between the
initial uniform temperature in the tank and the steady inlet
temperature. In the charging process, these temperatures cor-
respond to the minimum and maximum densities, respectively.
For the discharging process, the reverse is true: the steady inlet
temperature corresponds to the minimum density, and the cold
liquid initially in the tank has the maximum density. For an
unsteady, two-dimensional flow, the dimensionless vorticity,
stream function and energy equations are

Vi = ~w, {1a)
dw 1 _, 1 oT

— = — \/ T, lb
&R TR (1)
dr 1, )
T " PiRe” (Ic)

where d/dr denotes the convective derivative, The dimension-
less domain is defined by 0 <x<X and 0<y< Y. The Rey-
nolds number and Froude number appearing in Eqs. (1a)-
(lc) are Re=ul/v and Fr=u/\/g'l. wherc g’ = g(Ap/p) =
g(BAT) 1s the reduced internal gravity. The stream function,
¥, and vorticity, «, are related to the x and v components of
velocity by u =, v = —y, and o = v, — u,, where the sub-
scripts x and vy denote differentiation.

We assume a parabolic profile for the horizontal velocity at
the inlet. For the charging process, this boundary condition is
u = 6y(1 — y). The steady inlet temperature is set to zero or
one for the charging or discharging process. respectively. Both
the inlet conditions on velocity and on temperature are ramped
from their initial value to their steady-state value using a cubic
startup function over a dimensionless period of 0.2. The condi-
tions applied along the outflow boundary are y,, =0, @, =0
and 7, = 0, where the subscript n denotes differentiation with
respect to the coordinate normal to the boundary. No-slip and
adiabatic boundary conditions are enforced on the tank walls.
The free surface shown in Fig. 1(b) is modeled as a fixed, hor-
izontal shear-free boundary. This is appropriate because the
Froude number based on g, rather than g’ is very small. The
initial conditions are y = = 0 and dimensionless tempera-
ture equal to | or 0 for the charging or discharging process,
respectively.

The governing equations. (1a)—(lc), are solved on a grid
with uniform spacing in both coordinate directions. For the in-
terior of the domain, the accuracy of the finite-difference
scheme is second order in space and first order in time. The
vorticity at a solid-wall boundary is computed from a formula
that is first-order accurate in space and time. A more detailed
description of the numerical method and related accuracy is-
sues can be found in our earlier paper (Homan and Soo,
1997). For all the results presented in this paper, a dimension-
less grid size, Ax = Ay, of % or smaller has been used.

2.2. Diffusion-limit model

Decomposing the temperature into a horizontally averaged
component

X
T(v.t) = )l('/T(x,}: t)dx, (2)
0
and a perturbation, 7’(x, y,¢), the full temperature field is given
by

T,y t) =T 6) + T'(x,y.1). (3)

Averaging Eq. (1c) over the tank width and recognizing that
the horizontal average of the vertical velocity at any level
above the inlet and below the outlet is 1/X, the equation sim-
plifies to

X
ar 10T o 19T 1 ¢
AT G N S Lt 4
o Xy oy\Pear X / vTdx “®

0
using the no-slip and adiabatic boundary conditions for
1 <y<Y — 1. Note that in general, the perturbation integral
will be a function of both » and 1.
As a first approximation. we assume that the perturbation
integral is proportional to the gradient of the mean tempera-
ture.

_ X
& OT 1/,
ﬁ;)l_* —}' o' T dx, {5)

O

thereby simplifying Eq. (4) to
ar 19T  wx &FT 61
o X dy  Pen?’ (6)
where k = (1 + ¢/2). Since any heat transfer between the warm
liquid and the cold liquid reduces the efficiency of the charging
and discharging processes. and since conductive heat transfer
is unavoidable, the one-dimensional solution of Eq. (6) with
¢ = 0 and x = | represents the optimal charging and discharg-
ing processes with the maximum achievable efficiencies. Clear-
ly, the thermal-mixing diffusivity, ¢, will be nonzero for all
actual laminar or turbulent flows, and the increased heat trans-
fer will reduce the efficiency.

The well-known solution to Eq. (6) for a constant and uni-
form value of « is

T(y.6)=1—-(1/2)erfc {“’_/Y‘ } 7

subject to the boundary conditions T(-oc,)=0 and
T(_OC,I)<OC.

2.3, Measures of thermal mixing

The analytic solution given by Eq. (7) is useful not only as a
model of the ideal, limiting behavior of stratified storage but
also as a means for relating characteristic features of the tem-
perature history to a quantitative measure of thermal mixing.
This measure of thermal diffusion. cast either in terms of x
or ¢. can be estimated from the two most common types of ex-
perimental data measured in stratified thermal-storage tanks:
(1) vertical in-tank temperature profiles, and (2) time traces
of the tank inlet and outlet temperature. In this section, we re-
late these two types of data to the one-dimensional model.
Their relationship to the results of the two-dimensional, un-
steady numerical solutions will be discussed later in this paper.

With respect to a vertical temperature profile, the most ob-
vious measure of thermal mixing is the thickness of the the-
rmocline. Since the transition from the sharp temperature
gradient at the center of the thermocline to the gradient far
above or below it decays gradually, quantitative measurement
of the thermocline thickness requires a definition of its ‘edge’.
in a sense similar to that of the classical boundary layer. We
have chosen to define the thermocline thickness as the vertical
distance between the locations where 7 = 7, and where
T =1~ T,. These correspond to the lower and upper edges
of the thermocline, respectively. The choice of the temperature
T., to define the edge of the thermocline is motivated by the
maximum allowable outlet temperature dictated by the heat
exchanger interface to the cooling load. During the charging
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process, the tank is filled with cold water until the outlet tem-
perature drops below T;, and then during the discharging pro-
cess, cold water can be withdrawn until the outlet temperature
rises to 7, (Wildin and Truman, 1985). In general, the maxi-
mum allowable outlet temperature is less than 25% of the char-
acteristic temperature difference AT.

Since the solution given in Eq. (7) is symmetric about the
vertical location of the fill line, y = yr = /X, the thermocline
half-thickness is given symbolically by

0=t/X —ym =y —t/X, (8)
where y, and y; denote the vertical locations where T="T,
and where T =1 — T, respectively. This definition of the

thermocline thickness is illustrated in Fig. 2.

The quantity y,, is another important characteristic of the
vertical temperature profile, because it relates directly to the
amount of cold fluid in the tank at a given instant. We denote
this cold-fluid volume by ¢ and define it as the amount of cold
liquid at a temperature less than 7,,. The cold-fluid volume is

¢ =ymX =1—-0X (9)

for the ideal, one-dimensional model.

Using the definition given in Eq. (8) and the analytic solu-
tion without mixing (x = 1), the thermocline thickness grows
according to

8 =2(1/Pe)' £ (T,n), (10)
where f(T;,) = erfc' (27,,). Since the function f is smooth for
the interval of interest, 7, = (0.05,0.25), a quadratic, least-
squares fit provides an excellent approximation. The fitted
equation is

f(T) = 1.46 — 0.36(33.2T,, — 1.0)'/°. (11)

This equation, in combination with Eq. (10), provides a conve-
nient method for estimating the thermocline thickness in the
ideal limit of simple one-dimensional conduction.

The other important type of data measured for thermal
storage tanks are the time traces of the inlet and outlet fluid
temperature. For these data, the important feature is the time
at which the outlet temperature, 7, either drops to, or rises to,
T for the charging or discharging process, respectively. We re-
fer to these two times as the charging time, t., and the discharg-
ing time, #,. The importance of the discharge time has been
recognized not only in the chilled-water storage community
where it was originally referred to as the ‘useful volume’ by
Wildin and Truman (1985), but also in the solar-thermal

y~ T T T T T T ]
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Fig. 2. Definition of parameters describing the size and location of the
thermocline for a one-dimensional temperature distribution.

community where it was termed the ‘discharge efficiency’ by
Lavan and Thompson (1977).

For the one-dimensional model, the outlet-temperature his-
tory for the charging process is 7,(¢) = T(Y,¢) and the charg-
ing time, £, is given implicitly by

Y —t./X
2(xt./Pe)'?

For typical design and operating conditions, the ideal charging
time is less than 1.1 tank volumes. Of course, in reality, the the-
rmocline is generally thicker than that predicted by the ideal
model, and more cold fluid must be put into the tank in order
to push out the thermocline. Likewise, for the discharging pro-
cess, the actual volume of cold fluid that can be removed from
the tank is usually less than predicted by the ideal model.

The most important overall measure of thermal perfor-
mance is the efficiency of the stratified storage tank. The effi-
ciency of a stratified storage device is the ratio of energy
added during the discharging process, Oy, to that removed dur-
ing the charging process, .. We define these two quantities, in
dimensionless terms, as

Tolt) =Th=1-(1/2) erfc{ . (12)

= O _’/d. —T.(nld 3
dep(,mfv‘( [1 - To(n)]ds. (13a)
)
and
_ 0 /
c=E——z= [T, ,
0. pevat ) (£)dr (13b)

where T, is a suitably-averaged outlet temperature and A7 is
the difference between the initial uniform temperature in the
tank and the steady inlet temperature for both the discharging
and the charging process. The upper limits of the integrals in
Eqgs. (13a) and (13b) are the discharging and charging times al-
ready mentioned. As discussed in our earlier paper (Homan et
al., 1996), the above definition of the efficiency corresponds to
a fully charged condition and accounts for the constraints on
the outlet temperature dictated by the cooling function of
the system. For the one-dimensional model, the quantity Q,
is approximately equal to unity, irrespective of Pe. For this
reason, the efficiency of the stratified storage tank depends pri-
marily on Qy. The efficiency of the overall, storage-based cool-
ing system depends strongly on the charging time however,
since it corresponds to increased chiller run-time.

3. Results and discussion

We present results for a fixed set of flow parameters chosen
as Re = 50, Pr = 10, and Fr = 1. These values correspond to a
relatively slow filling process that is strongly influenced by the
stratification. The Prandtl number is representative of water at
approximately 10°C. With the flow parameters fixed, we con-
centrate on the influence of changes in geometry. In the first
subsection here, we examine the charging of a tall tank, mak-
ing explicit the comparison to the analytic, one-dimensional
model. In the second subsection, we present results for the
charging and discharging of a square tank and its computed
efficiency.

3.1. Tali-tank limit

The charging of a tall tank, as illustrated in Fig. 1(a), pro-
duces a wide range of fascinating buoyant-flow phenomena.
Initially, the inflow of cold liquid produces a gravity current
which moves across the bottom of the tank at a nearly uniform
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velocity and creates the initial thermocline. The gravity current
slows as it approaches the right vertical wall and then collides
with it. The collision causes some cold liquid first to bounce up
along the wall and then to collapse downward, exciting a com-
plex array of internal wave phenomena. These waves are evi-
dent in oscillations of the thermocline and persist for a long
time. As the filling process continues, the thermocline is trans-
ported vertically away from the inlet, and the flow pattern be-
low the thermocline transitions from a multicell recirculation
pattern to one dominated by a single large vortex above the in-
let. Further description of these stages may be found in our
earlier paper (Homan and Soo, 1997).

The centerline temperature profiles shown in Fig. 3 illus-
trate the growth and vertical transport of the thermocline dur-
ing the filling process. One of the most striking features of this
plot is the nonequilibrium condition evident in the profile at
t = 64, This profile is a result of the strong convective motion
produced by the jet inflow. This effect appears even more clear-
ly in a plot of vertical profiles at selected positions across the
tank width. Fig. 4 shows such a set of profiles at time
¢t = 128. At this instant of time, the jet vortex is centered at
x ~ 5.5 with a diameter of approximately 2.5. The counter-
clockwise motion of the jet vortex has noticeably widened
the lower portion of the thermocline as evident in the x = 2
profile. The profiles for x > 8 appear to be only slightly influ-
enced by the velocity field since, at this stage of the charging
process, this region contains only relatively low fluid velocities.

As introduced in the formulation section, one way of mea-
suring the thermal mixing is to compute the accumulation of
‘cold’ fluid in the storage tank. For the two-dimensional mod-
el, we compute the cold volume from

Y X
o=fi= [ [~

where the Heaviside function .# is defined as

0, T(x,v1t) =Ty,
H|Ty — Ty, )] =4 - 15
- T} = {0 (15)
Numerically, we evaluate the integral appearing in Eq. (14)
using the trapezoidal rule. In addition to the ideal model,

T(x,y,1)]dx dv, (14)

Fig. 3. Time series of temperature profiles at the tank centerline,
x = X /2, for the tall-tank case with X = 16.
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Fig. 4. Vertical profiles of temperature at ¢ = 128 for the charging of a
tall tank with X = 6.

one obvious standard for comparison with the cold volume
is the cumulative amount of cold fluid put into the tank,

\

= /dl /‘M(O.]/‘.l‘)<%[T|1\ — 7(0,y,8)]dy. (16)
g

{

(bi(t)z%

since the inlet velocity and temperature are steady for all time
except the relatively small startup period, ¢,;(¢) = ¢.

Fig. 5 shows time traces of the cold volume calculated for
three representative values of T,. For 7, =0.05 and 0.15,
the cold volume increases slowly for ¢ < 64 and then starts to
increase with time at a rate almost equal to unity. The opposite
seems to be true for T, = 0.25; the rate of increase actually ap-
pears to decrease with time. The explanation is that in the early
stages of the charge process, much of the thermal mixing actu-
ally increases the cold volume inventory if 7, < 0.25 is used as
the criterion. At later times, when the growth of the thermoc-
line is attributable more to conduction than to convective mix-
ing, its growth rate coincides with that of the smaller 75,.

The shape of the curves shown in Fig. 5 are remarkably
similar to those presented by Baines et al. (1982, 1983) in their
study of filling a tank of fresh water with salt water. In
their study, the concentration gradient was visualized by a
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0 L 1 1 J. 1
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t

Fig. 5. Time variation of cold volume during the charging of a tall tank
with X = 16 for T;,, = 0.05, 0.15 and 0.25 (solid lines) from bottom to
top, respectively. The dashed line indicates ¢ = t.
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shadowgraph technique and the volume under it computed at
a series of times during the filling process. They assumed this
volume corresponded to the amount of flud at a salinity level
approximately equal to that of the inlet. Since they did not in-
dicate how the interface they measured with the shadowgraph
technique correlated with density, quantitative comparison
with their results is difficult. However, the basic shape of the
7w = 0.05 and 0.15 curves in Fig. 5, showing an initial tran-
sient in which ¢ increases at a sublinear rate and then ap-
proaches a linear increase with time, is certainly evident in
their findings. Also evident in some of their data is behavior
close to that seen in the curve for T;, = 0.25.

The computed temperature field may also be used to calcu-
late an effective diffusivity. As already suggested, the in-tank
temperature field can be related to an effective diffusivity either
through the thermocline thickness or the cold volume. Note
that this results in a value for the effective diffusivity that is,
in a sense, averaged over both space and time. This is in con-
trast to a direct computation of the diffusivity from the pertur-
bation integral appearing in Eq. (4). From Eq. (10), the mixing
factor is related to the thermocline thickness by

Pe [0\’
/<El+:;/3(=?§<7> . (17)
and to the cold volume by

Pe/t—¢\°
= o= — | ——— ) . 1
K=14¢/ 4’(/‘7') (18)

The thermal mixing factor computed by these two methods
may differ however. The correspondence will depend on how
closely ¢ = (t— ¢)/X in the two-dimensional temperature
field. Since, in the analytic model, the thermocline thickness
and height 1, are not functions of x, their counterparts in
the two-dimensional case must be representative of the local
quantities illustrated in Fig. 6.

A comparison of these quantities averaged over the width
of the tank and at the tank centerline, x = X' /2. is shown in Ta-
ble 1. The table shows that for the parameters presently under
consideration, estimation of the mixing factor by the horizon-
tally-averaged thermocline thickness or the cold volume is es-
sentially equivalent, i.c., o ~ (f — ¢)/X. It also indicates that
estimating the mixing factor from a single vertical profile of
temperature at the tank centerline would be quite adequate,
since ywn(x = X/2) ~ /X — 8(x = X/2).

Although the relationships between 8, y,,, and ¢ in the one-
dimensional model seem to hold roughly true in the two-di-
mensional model, their slight differences are equally important,
since they give clues as to the shape of the overall thermocline,
For example, at ¢ = 64, the horizontally averaged thermocline
thickness is less than the local thickness at the tank centerline.
However, at later times. the relationship reverses. The explana-
tion is that at 7 = 64, the local thickness is dictated by the con-
vective motion of the jet vortex and intcrnal gravity waves. A
similar result would also be obtained if, for example. a profile

Table 1

Y

Y=

Fig. 6. Parameter definitions for a two-dimensional temperature distri-
bution.

were taken at a horizontal position that cut through the bump
in the lower edge of the thermocline shown in Fig. 6. The same
observations can also be made for a comparison between
ym{X/2) and ¢/X. Of course, there are also horizontal posi-
tions where the opposite is true. A local thickness less than
the average is most pronounced directly above the center of
the jet vortex. Inferences about the flowfield can even be made
from a single temperature profile, without direct knowledge of
d or ¢. In that case, comparison of 1/X -y, with y — 1/X in-
dicates whether the thermocline thickness is symmetric about
the fill line, yy = 7/X. A mismatch between the two quantities
is evidence that the thermocline is still under the influence of
the high fluid velocities present in the near inlet region. Once
the thermocline has moved a sufficient distance away from
the inlet, the thermocline becomes almost exactly symmetric.
We have chosen to compute the mixing factor based on the
cold volume, ¢, since it avoids the ambiguity of determining a
thermocline thickness at instants when the profile is not a sin-
gle-valued function of the vertical coordinate y. The time trace
of the diffusivity ratio calculated in such manner is shown in
Fig. 7. Interestingly, the ratio is negative for 7;, = 0.25, which
means less ‘cold” water is being consumed than for conduction
alone, since convective mixing is producing more fluid at a
temperature that satisfies the maximum-temperature criterion.
A doubling of the domain width produces a noticeable
change in the level of thermal mixing. For example, at
1 =256, ¢ ~ 224 for X = 16; whereas, for X = 32. ¢ ~ 192.
Since 1 —¢ for X =32 is approximately twice that for
X = 16, the explanation for much of the increased thermal
mixing must be thermal diffusion across the increased cross-
sectional area of the thermocline. This is confirmed by a com-
parison of the mixing factor for these two cases, as shown in

Comparison of local and average parameters that provide some measure of thermal mixing; data are from the tall-tank case with X = 16. ¥, = 32,

and T, = 0.15

¢ 5 X /2) (X /2) ¢ (t - ¢)/ X /X —3(X/2)
64 0.66 0.88 3.03 53.6 0.65 312

128 1.07 0.78 7.39 116 0.75 7.22

192 1.17 1.13 109 177 0.94 10.9

256 1.19 1.13 15.1 240 1.00 14.9

320 1.26 1.25 18.9 302 1.13 18.8

384 1.35 1.38 238 364 1.25 226
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Fig. 7. Variation of diffusivity ratio with time for the tall-tank case
with X = l6.

Fig. 8. At ¢ = 350, for example, the mixing factors are nearly
the same. The shapes of the curves differ. however, in two im-
portant regards: (1) the peak of the X = 16 curve is over one-
third higher than that of the X = 32 curve; and (2) the peak of
the X = 32 curve does not fall off as rapidly as in the X = 16
case. We believe these differences can, in large part, be attrib-
uted to changes in the kinetic energy of the gravity current
when turned at the tank wall and the thermocline residence
time near the high velocities present in the inlet region.

The present results lie in a Reynolds number range that has
been investigated both experimentally and computationally by
previous researchers. Mixing factors estimated from their re-
sults are shown in Table 2. For the data of Wildin and Sohn
(1993), the mixing factor has been estimated from vertical tem-
perature profiles measured during the charging of a rectangu-
lar tank (H x W = 0.91 m x 2.4 m) with a single inlet of either
1.5 or 2.5cm in height. For the computational results present-
ed by Valentine and Tannous (1985), the mixing factor has
been estimated from centerline temperature profiles. The

Table 2
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Fig. 8. Time trace of the mixing factors for a tall tank with X = 16 and
X = 32. Both curves are for 7, = 0.15.

(=)

numerical scheme of Valentine and Tannous is first-order ac-
curate in space. Computational data for a tank with a single
corner inlet have also been presented by Cai et al. (1993) and
Stewart et al. (1994), based on a two-equation turbulence mod-
el and a numerical method of first-order spatial accuracy. The
mixing factor has been estimated from contour plots of two-
dimensional temperature presented in the two works. Fig. 9
shows the data of Table 2 with Reynolds number along the ab-
scissa. The close correspondence of the present results to the
experimental trend of Wildin and Sohn provides strong sup-
port for the accuracy of our model and of the need to resolve
the small thermal interior layers.

3.2, Square tank

The rather surprising result of imposing an upper boun-
dary, specifically a zero-shear stress boundary, is that it has rel-
atively little effect on the thermocline and the inlet flowfield
beneath it, at least until very late in the filling process. Table 3

Estimated mixing factors based on numerical and experimental data for the filling of a rectangular tank with a single inlet; the mixing factor, n, was
computed from vertical profiles of temperature using ¢ = ¥, (x)X and & ~ §(x) for the data of Valentine and Tannous (1985) and Wildin and Sohn

(1993); all mixing factors are based on 7, = 0.15

K(d) K(O} 1/ X Re Pr Fr W/l H/W 1/Ax
Tall-tank limit 1.0 1.6 12.0 50 10 1.0 16 2.0 16
1.1 1.7 12.0 50 10 1.0 16 2.0 32
1.2 2.2 6.0 50 10 1.0 32 1.0 16
Square tank ] 1.7 2.0 50 10 1.0 16 1.0 32
Cai et al. (1993) 200.0 230.0 11.0 333 12 0.08 10 2.0 4
Stewart et al. (1994) 70.0 100.0 5.3 167 12 0.15 10 2.0 4
280.0 30,0 7.1 333 12 0.08 i5 1.3 4
Valentine and Tannous (1985) 18.0 320 24 100 10 0.43 15 0.67 2
- 20.0 3.3 100 10 0.43 15 0.67 2
Wildin and Sohn (1993) 2.3 24 11.0 159 9 0.77 155 0.38 -
(experimental) 1.8 1.8 33.0 159 9 0.77 155 0.38 -
22 2.9 7.3 191 9 0.42 95 0.38 -
0.9 2.1 21.0 191 9 0.42 95 0.38 -
7.1 11.0 11.0 316 9 1.47 155 0.38 -
7.5 8.7 230 316 9 1.47 155 0.38 -
23.0 19.0 11.0 429 9 2.02 155 0.38 -
12.0 17.0 230 429 9 2.02 155 0.38 -
27.0 21.0 6.5 446 9 0.99 95 0.38 -
18.0 220 20.0 446 9 0.99 95 0.38 -
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Fig. 9. Comparison of mixing factors predicted numerically and exper-
imentally for a rectangular tank with a single inlet and outlet. The data
are (1) the present results (o), (2) previous computational results () of
Cai et al. (1993), Stewart et al. (1994) and Valentine and Tannous
(1985), and (3) empirical results (o) of Wildin and Sohn (1993). Open
symbols denote x(¢} and filled symbols x(9).

shows a comparison of salient parameters for the tall-tank and
finite-height cases. Apparently, at these Reynolds and Froude
numbers, the thermocline functions very effectively in isolating
the flowfields above and below it. Instantaneous streamline
and temperature contours, shown in Fig. 10, also illustrate this
effect clearly.

A plot of the cold volume, shown in Fig. 11, reveals very
little influence of the tank height until about the last one-six-
teenth of the tank volume. At that point, the cold volume lev-
els off as the remaining portion of the thermocline becomes
trapped in the upper corner opposite the inlet. The higher 7;,
curve begins to level off first because more of the thermocline
meets the criterion for being ‘cold’, thus the withdrawal of
the thermocline provides no net gain in cold volume, since fluid
flows into the tank at a rate identical to which it flows out of
the tank.

The outlet temperature history for this same case, shown in
Fig. 12, seems quite smooth, similar to a profile for the one-di-
mensional, pure conduction model as given by Eq. (7). The
fact that the bulk-averaged and outlet-centerline profiles do
not coincide is evidence of the upward movement of the the-
rmocline late into the filling process. For 7, =0.15, the
bulk-averaged outlet temperature rises above 7, at time
. = 278.4. Relative to the overall tank volume, the charging
fraction is #. /XY = 278.9/256 = 1.09.

This charging time can also be used to compute a mixing
factor from

16 T | A S e

12_ "’«' ("‘ "0 ’4" _

: AR Y . A
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T

Fig. 10. Isotherms (7'=0.05. 0.25, 0.5, 0.75. 0.95) overlayed with in-
stantaneous streamlines (Ay = 0.2) at the midpoint, t = X¥/2 = 128,
of the charging process for a square tank.
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Fig. 11. Time variation of cold volume during the charging of a tank
withX =Y = 16 for 7, = 0.05, 0.15 and 0.25 (solid lines) from bottom
to top. respectively. The dashed line indicates ¢ = .

The mixing factor based on the charging time is x(z,) = 1.7.

_ 2 This value is comparable to that determined by the interior
Pe (1./X -7 - .
K== ) (19) mixing factor, since for example, at 1 = 224, x = 1.1 for both
1 / the tall and square-tank case.

Table 3
Measures of thermal mixing at select stages of the charge process for the tall-tank limit and square tank (7, = 0.15)

t =64 =128 t =224

3 ¢ K 3 ¢ K 8 ¢ K
X=16Y, =32 0.68 52.9 1.7 1.13 115 1.2 [.13 208 1.1
X=32Y, =32 0.52 42.8 1.6 0.72 99.7 1.4 1.35 191 1.1
X =16Y =16 0.67 529 1.74 1.1 115 1.2 0.96 208 1.1
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Fig. 12. Time trace of outlet fluid temperature for charging of a tank
with X =Y = 16.

The slight oscillations in outlet temperature evident in
Fig. 12 are a remnant of the internal waves set off by the turn-
ing of the gravity current early in the charging process. As a
side note, computations we have done for a tank aspect ratio
(H/W) of one-half show that the oscillations are even larger,
since the thermocline approaches the outlet in half the time.
Oscillations of tank outlet temperature, similar in character
to our numerical results, have also been observed in discharg-
ing experiments conducted by Wildin (1989).

For the discharging process, warm liquid flows into the
tank through the slot adjacent to the free surface, and cold
fluid is drawn out from the bottom of the tank. Fig. 13 con-
tains the streamlines and temperature contours midway
through the discharging process and at the end of the discharg-
ing process. The recirculation pattern above the thermocline
reveals an obvious change from that observed below the the-
rmocline in the charging process. During the charging process,
the primary vortex did not move close to the wall opposite the
inlet until very late in the process. In contrast, for the discharg-
ing process, the absence of a shear stress along the free surface
allows the jet inertia to place the main recirculation cell right
up against the left wall. The free surface also leads to higher
amplitude internal waves and allows for a significantly strong-
er jet vortex. Surprisingly, the resulting thermocline thickness,
at 1 = 192 for example, is only 1 or 2% larger at the same time
in the charging process. Apparently, the stronger oscillations
do not lead to large increases in the level of thermal mixing.

The discharging time ¢4 for the case X = ¥ = 16is 0.87 for
T = 0.15. The discharging time can be used to estimate an
equivalent mixing factor using

_Pe (V- /X N
'\44&1 (———“——f ) . (20)

The mixing factor computed from Eq. (20) is x(z4) = 4.8. Al-
though as indicated earlier, the thermocline thicknesses at an
intermediate time in the charging and discharging processes
are approximately equal, the discharging time indicates a high-
er effective diffusivity than that observed for the charging pro-
cess. The explanation for this apparent discrepancy is that
more of the thermocline is trapped at the bottom of the tank
at the end of the discharging process than is caught at the up-
per surface at the end of charging.

Starting from a uniform initial condition for both the
charging and the discharging process, the charge heat transfer
is 247.4, and the discharge heat transfer is 210.6, as computed
from a trapezoidal rule integration of the bulk-averaged outlet

1677

12

Fig. 13. Isotherms (7"=0.05, 0.25, 0.5, 0.75, 0.95) overlayed with in-
stantaneous streamlines (Ay = 0.2) for two instants, = 128 and
256, during the discharging of a tank with X = Y = 16.

temperature. The efficiency. Q4/Q., is therefore 0.85, only a
few percent less than the ideal, pure-conduction efficiency at
Pe = 500 of n = 0.925 (Homan et al., 1996).

4. Conclusions

In this paper, we have shown that two-dimensional numer-
ical simulations of the filling of a stratified storage tank with a
single inlet and outlet exhibit excellent quantitative agreement
with experimental data when the thermal interior layers are ad-
equately resolved. Resolving the thermal layers is important
not only for quantifying the level of thermal mixing but also
for capturing the transients driven by the action of gravity
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on the unsteady temperature field. For the laminar flows sim-
ulated, the computed efficiency of the full charge and discharge
cycle is within 10% of the ideal limit predicted by a one-dimen-
sional model. -

Recognizing the one-dimensional model as the evolution
equation of the horizontally averaged temperature field, we
have cast the deviation from one-dimensional motion into
the product of an effective diffusivity and the vertical gradient
in mean temperature. This diffusivity has enormous practical
utility even when assumed to be spatially uniform. In contrast
to storage-tank efficiency that has a single value for the com-
plete charging and discharging process, the effective diffusivity
factor can be used to quantify the level of thermal mixing at
any stage of the charging and/or discharging process. The dif-
fusivity factor can also be simply estimated from minimal cx-
perimental or computational data, i.e., vertical (emperature
profiles or time traces of tank outlet temperature. Analysis
of our two-dimensional data reveals that the most important
transients are, in order of importance: (1) the removal of the
thermocline at the end of the discharging and charging pro-
cesses and (2) the initial formation of the thermocline at the be-
ginning of the discharging and charging processes. Since
chilled-water storage tanks are often discharged at a faster rate
than which they are charged, the discharging process could, in
general, be even more important than indicated by the present
results.
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